
Genetic Programming Symbolic Classification: A Study
Michael F. Korns
Lantern Credit LLC

2240 Village Walk Drive Suite 2305
Henderson, Nevada 89052

mkorns@korns.com

ABSTRACT
While Symbolic Regression (SR) is a well-known offshoot of Genetic Programming, Symbolic Classification (SC), by comparison, has

received only meager attention. Clearly, regression is only half of the solution. Classification also plays an important role in any well

rounded predictive analysis tool kit. In several recent papers, SR algorithms are developed which move SR into the ranks of extreme

accuracy [7][14]. In an additional set of papers algorithms are developed designed to push SC to the level of basic classification accuracy

competitive with existing commercially available classification tools [1][10][15].

This paper is a simple study of four proposed SC algorithms and five well-known commercially available classification algorithms to

determine just where SC now ranks in competitive comparison. The four SC algorithms are: simple genetic programming using argmax

referred to herein as (AMAXSC); the M2GP algorithm [1]; the MDC algorithm [9], and Linear Discriminant Analysis (LDA) [15]. The five

commercially available classification algorithms are available in the KNIME system [16], and are as follows: Decision Tree Learner

(DTL); Gradient Boosted Trees Learner (GBTL); Multiple Layer Perceptron Learner (MLP); Random Forest Learner (RFL); and Tree

Ensemble Learner (TEL).

A set of ten artificial classification problems are constructed with no noise. The simple formulas for these ten artificial problems are listed

herein. The problems vary from linear to nonlinear multimodal and from 25 to 1000 columns. All problems have 5,000 training points and

a separate 5,000 testing points. The scores, on the out of sample testing data, for each of the nine classification algorithms are published

herein.

Keywords

Symbolic Classification, Genetic Programming, Linear Discriminant Analysis.

1. Introduction
Symbolic Regression (SR) is a well-known offshoot of Genetic Programming; however, Symbolic Classification (SC) by comparison, has

received relatively little attention. While regression is important, it is only half of the solution. Classification also plays an important role in

any well rounded predictive analysis tool kit. Several recent papers develop algorithms which move SR into the ranks of extreme accuracy

[7][14]. Additionally several papers develop algorithms designed to raise SC accuracy to the level of basically competitive with existing

commercially available classification tools [1][9][10][15].

This paper is a simple study of four proposed SC algorithms and five well-known commercially available classification algorithms to

determine just where SC now ranks in competitive comparison. The four SC algorithms are: simple genetic programming using argmax

referred to herein as (AMAXSC); the M2GP algorithm [1]; the MDC algorithm [9], and Linear Discriminant Analysis (LDA) [15]. The five

commercially available classification algorithms are available in the KNIME system [16], and are as follows: Decision Tree Learner

(DTL); Gradient Boosted Trees Learner (GBTL); Multiple Layer Perceptron Learner (MLP); Random Forest Learner (RFL); and Tree

Ensemble Learner (TEL).

A set of ten artificial classification problems are constructed with no noise such that absolutely accurate classifications are theoretically

possible. The discriminant formulas for these ten artificial problems are listed herein. The problems vary from linear to nonlinear

multimodal and from 25 to 1000 columns such that each classification algorithm will be stressed on well understood problems from the

simple to the very difficult. All problems have 5,000 training points and a separate 5,000 testing points. The scores on the out of sample

testing data, for each of the nine classification algorithms are published herein.

No assertion is made that these four genetic programming SC algorithms are the best in the literature. In fact we know of an additional

enhanced algorithm, which we have not had time to implement for this study, M3GP [10]. No assertion is made that the five KNIME

classification algorithms are the best commercially available, only that KNIME is a trusted component of Lantern Credit predictive

analytics. This study is simply meant to provide one reference point for how far genetic programming symbolic classification has improved

relative to a set of reasonable commercially available classification algorithms.

Each of the four genetic programming SC algorithms is briefly explained further in this paper as follows.

2. AMAXSC In Brief
The simplest naïve genetic programming approach to multiclass classification is arguably a standard genetic programming approach, such

as a modification of the baseline algorithm [4], using the argmax function to classify as follows,

 E1: y = argmax(gp1, gp2,…, gpC) where C is the number of classes

Each gpk represents a separate discriminant function evolved via standard genetic programming. The argmax() function chooses the class

(1 to C) which has the highest value, and is strongly related to the Bayesian probability that the training point belongs to the cth class. No

other enhancements are needed other than the standard argmax() function and a slightly modified genetic programming system – modified

to evolve one formula for each class instead of the usual single formula.

3. MDC In Brief
The Multilayer Discriminant Classification (MDC) algorithm is an evolutionary approach to enhancing the simple AMAXSC algorithm.

 E2: y = argmax(w10+(w11*gp1), w20+(w21*gp2),…, wC0+(wC1*gpC)) where C is the number of classes, the gpk are GP evolved

formulas, and the wij are real weight coefficients (there are 2C weights).

Each gpk represents a separate discriminant function evolved via standard genetic programming. The argmax() function chooses the class

(1 to C) which has the highest value, and is strongly related to the Bayesian probability that the training point belongs to the cth class.

Given a set of GP evolved discriminant formulas {gp1, gp2,…, gpC}, the objective of the MDC algorithm is to optimize the choice of

coefficient weights {w10, w11, w20, w21,…,wC0, wC1} so that equation E2 is optimized for all X and Y.

The first step in the MDC algorithm is to perform a Partial Bipolar Regression on each discriminant entry i.e. wk0+(wk1*gpk) = Yk + e. This

produces starting weights for wk0 and wk1 which are not very good but are much better than random. The second step in the MDC algorithm

is to run a Modified Sequential Minimization on selected discriminant entries. This produces much better weight candidates for all

discriminant functions, but still not perfect. Finally, the MDC algorithm employs the Bees Algorithm to fully optimize the coefficient

weights.

The MDC algorithm is discussed in much greater detail in [9].

4. M2GP In Brief
The M2GP algorithm is described in detail in [1]. Briefly the M2GP algorithm generates a D-dimensional GP tree instead of a 1-

dimensional GP tree. Assuming that there are C classes, the algorithm attempts to minimize the Mahalanobis distance between the nth

training point and the centroid of the kth class. The basic training algorithm is as follows.

Algorithm A1: M2GP Training

1. Input: X, Y, D – where X is an MxN real matrix, Y is an N Vector, D is a scalar

2. For g from 1 to G do

3. Generate: F = {f1, f2,…,fD} set of D solutions

4. Evaluate: Zs = Eval(fs(X)) for s from 1 to D – a D-dimensional point

5. Cluster: Zk in Z for all k from 1 to C – group all the Z which belong to each class

6. For k from 1 to C do

7. Ck = covar(Zk) – a d by d covariance matrix for each class

8. Wk = centroid(Zk) – a 1 by D centroid vector

9. Dk(Xn) = sqrt((Zn-W
k)*(Ck)-1*(Zn-W

k)T) – for n from 1 to N (the number of training points)

10. For n from 1 to N do EYn = argmin(D1(Xn),D2(Xn),…,DC(Xn))

11. For n from 1 to N do En = 1 IFF EYn <> Yn, 0 otherwise

12. Minimize average(EY)

13. Return F, C, M

The M2GP algorithm is discussed in much greater detail in [1].

5. LDA Background
Linear Discriminant Analysis (LDA) is a generalization of Fischer’s linear discriminant, which is a method to find a linear combination of

features which best separates K classes of training points [11], [12], [13]. LDA is used extensively in Statistics, Machine Learning, and

Pattern Recognition.

Similar to the arguments leading up to the M2GP algorithm [1], we argue that any symbolic regression system can be converted into a

symbolic classification system. In this paper we start with the baseline algorithm published in [4]. Our baseline SR system inputs an N by

M matrix of independent training points, X, and an N vector of dependent values, Y. The SR system outputs a predictor function, F(X) ~ Y

where F is the best least squares estimator for Y which the SR system could find in the allotted training time. The format of F is important,

and consists of one or more basis functions Bfb with regression constants cb. There are always B basis functions and B+1 coefficients. The

following is the format of F.

 E3: y = c0+c1*Bf1+c2*Bf2+…+cB*BfB

There are from 1 to B basis functions with 2 to B+1 real number coefficients. Each basis function is an algebraic combination of operators

on the M features of X, such that Bfb(X) is a real number. The following is a typical example of an SR produced predictor, F(X).

 E4: y = 2.3+.9*cos(x3)+7.1*x6+5.34*(x4/tan(x8))

The coefficients c0 to cB play an important role in minimizing the least squares error fit of F with Y. The coefficients can be evolved

incrementally, but most industrial strength SR systems identify the optimal coefficients via an assisted fitness training technique. In the

baseline SR algorithm this assisted fitness training technique is simple linear regression (B=1) or multiple linear regression (B>1).

In symbolic classification problems the N by M matrix of independent training points, X, is unchanged. However, The N vector of

dependent values contains only categorical unordered values between 1 and K. Furthermore the least squares error fitness measure (LSE)

is replaced with classification error percent (CEP) fitness. Therefore we cannot use regression for assisted fitness training in our new SC

system. Instead, we can use LDA as an assisted fitness training technique in our new SC system.

Our new SC system now outputs not one predictor function, but instead outputs K predictor functions (one for each class). These functions

are called discriminants, Dk(X) ~ Yk, and there is one discriminant function for each class. The format of the SC’s discriminant function

output is always as follows.

 E5: y = argmax(D1,D2, … ,DK)

The argmax function returns the class index for the largest valued discriminant function. For instance if Di = max(D1,D2, … ,DK), then i =

argmax(D1,D2, … ,DK).

A central aspect of LDA is that each discriminant function is a linear variation of every other discriminant function and reminiscent of the

multiple basis function estimators output by the SR system. For instance if the GP symbolic classification system produces a candidate with

B basis functions, then each discriminant function has the following format.

D0 = c00+c01*Bf1+c02*Bf2+…+c0B*BfB

D1 = c10+c11*Bf1+c12*Bf2+…+c1B*BfB

Dk = ck0+ck1*Bf1+ck2*Bf2+…+ckB*BfB

The K*(B+1) coefficients are selected so that the ith discriminant function has the highest value when the y = i (i.e. the class is i). The

technique for selecting these optimized coefficients c00 to cKB is called linear discriminant analysis and in the following section we will

present the Bayesian formulas for these discriminant functions.

6. LDA Matrix Math
We use Bayes rule to minimize the classification error percent (CEP) by assigning a training point X[n] to the class k if the probability of

X[n] belonging to class k, P(k|X[n]), is higher than the probability for all other classes as follows.

 E6: EY[n] = k, iff P(k|X[n]) ≥ P(j|X[n]) for all 1≤j≥K

The CEP is computed as follows.

 E6: CEP = ∑(EY[n] ≠ Y[n] | for all n) / N

Therefore, each discriminant function Dk acts a Bayesian estimated percent probability of class membership in the formula.

 E7: y = argmax(D1,D2, … ,DK)

The technique of LDA makes three assumptions, (a) that each class has multivariate Normal distribution, (b) that each class covariance is

equal, and (c) that the class covariance matrix is nonsingular. Once these assumptions are made, the mathematical formula for the optimal

Bayesian discriminant function is as follows.

 E8: Dk(Xn) = μk(Ck)
-1(Xn)

T - 0.5μk(Ck)
-1(μk)

T + ln(Pk)

Where Xn is the nth training point, μk is the mean vector for the kth class, (Ck)
-1 is inverse of the covariance matrix for the kth class, (Xn)

T

is the transpose of the nth training point, (μk)
T is the transpose of the mean vector for kth class, and ln(Pk) is the natural logarithm of the

naïve probability that any training point will belong to the kth class.

In the following section we will present step by step implementation guidelines for LDA assisted fitness training in our new extended

baseline SC system, as indicated by the above Bayesian formula for Dk(Xn).

7. LDA Assisted Fitness Implementation

The baseline SR system [4] attempts to score thousands to millions of regression candidates in a run. These are presented for scoring via

the fitness function which returns the least squares error (LSE) fitness measure.

 E9: lse = fitness(X,Y,Bf1,…,BfB,c0,…,cB)

The coefficients c0,…,cB can be taken as is, and the simple LSE returned. However, most industrial strength SR systems use regression as

an assisted fitness technique to supply optimal values for the coefficients before returning the LSE fitness measure. This greatly speeds up

accuracy and allows the SR to concentrate all of its algorithmic resources toward the evolution of an optimal set of basis functions

Bf1,…,BfB.

Converting to a baseline symbolic classification system will require returning the classification error percent (CEP) fitness measure, which

is defined as the count of erroneous classifications divided by the size of Y, and extending the coefficients to allow for linear discriminant

analysis as follows.

 E10: cep = fitness(X,Y,Bf1,…,BfB,c00,…,cKB)

Of course the coefficients c00,…,cKB can be taken as is, and the simple CEP returned. However, our new baseline SC system will use LDA

as an assisted fitness technique to supply optimal values for the coefficients before returning the CEP fitness measure. This greatly speeds

up accuracy and allows the SR to concentrate all of its algorithmic resources toward the evolution of an optimal set of basis functions

Bf1,…,BfB.

7.1 Converting to basis space
The first task of our new SC fitness function must be to convert from N by M feature space, X, into N by B basis space XB. Basis space is

the training matrix created by assigning basis function conversions to each of the B points in XB as follows.

 E11: XB[n][b] = Bfb(X[n])

So for each row n of our N by M input feature space training matrix, (X[n]), we apply all B basis functions, yielding the B points of our

basis space training matrix for row n, (XB[n][b]). Our new training matrix is the N by B basis space matrix, XB.

7.2 Class Clusters and Centroids
Next we must compute the K class cluster matrices for each of the K classes as follows

 E12: Define CX[k] where XB[n] ∈ CX[k] iff Y[n] = k

Each matrix CX[k] contains only those training rows of XB which belong to the class k. We also compute the simple Bayesian probability

of membership in each class cluster matrix as follows.

 E13: P[k] = length(CX[k]) / N

Next we compute the K cluster mean vectors, each of which is a vector of length B containing the average value in each of the B columns

of each of the K class cluster matrices, CX, as follows.

 E14: μ[k][b] = column mean of the bth column of CX[k]

We next compute the class centroid matrices for each of the K classes, which are simply the mean adjusted class clusters as follows

 E15: CXU[k][m][b] = (CX[k][m][b] - μ[k][b]) for all k, m, and b

Finally we must compute the B by B class covariance matrices, which are the class centroid covariance matrices for each class as follows.

 E16: COV[k] = covarianceMatrix(transpose(CXU[k]))

Each of the K class covariance matrices is a B by B covariance matrix for that specified class.

In order to support the core LDA assumption that the class covariance matrices are all equal, we compute the final covariance matrix by

combining each class covariance matrix according to their naïve Bayesian probabilities as follows.

 E17: C[m] [n] = ∑(COV[k][m][n]*P[k] | for all 1≤k≤K)

The final treatment of the covariance matrix allows the LDA optimal coefficients to be computed as shown in the following section.

7.3 LDA Coefficients
Now we can easily compute the single axis coefficient for each class as follows.

 E18: c[k][0] = - 0.5μk(Ck)
-1(μk)

T + ln(Pk)

The B basis function coefficients for each class are computed as follows.

 E19: c[k][1…B] = μk(Ck)
-1

All together these coefficients form the discriminants for each class as follows.

 E20: Dk(Xn) = ck0+ck1*Bf1(Xn)+ck2*Bf2(Xn)+…+ckB*BfB(Xn)

And the estimated value for Y is defined as follows.

 E21: y = argmax(D1(Xn),D2(Xn), … ,DK(Xn))

8. Artificial Test Problems
A set of ten artificial classification problems are constructed, with no noise, to compare the four proposed SC algorithms and five well-

known commercially available classification algorithms to determine just where SC now ranks in competitive comparison. The four SC

algorithms are: simple genetic programming using argmax referred to herein as (AMAXSC); the M2GP algorithm [1]; the MDC algorithm

[9], and Linear Discriminant Analysis (LDA) [15]. The five commercially available classification algorithms are available in the KNIME

system [16], and are as follows: Decision Tree Learner (DTL); Gradient Boosted Trees Learner (GBTL); Multiple Layer Perceptron

Learner (MLP); Random Forest Learner (RFL); and Tree Ensemble Learner (TEL).

Each of the artificial test problems is created around an X training matrix filled with random real numbers in the range [-50.0,+50.0]. The

number of rows and columns in each test problem varies from 5000x25 to 5000x1000 depending upon the difficulty of the problem. The

number of classes varies from Y = {1,2} to Y = {1,2,3,4,5} depending upon the difficulty of the problem. The test problems are designed

to vary from extremely easy to very difficult. The first test problem is linearly separable with 2 classes on 25 columns. The tenth test

problem is nonlinear multimodal with 5 classes on 1000 columns.

Standard statistical best practices out of sample testing are employed. First training matric X is filled with random real numbers in the

range [-50.0,+50.0], and the Y class values are computed from the argmax functions specified below. A champion is trained on the training

data. Next a testing matric X is filled with random real numbers in the range [-50.0,+50.0], and the Y class values are computed from the

argmax functions specified below. The previously trained champion is run on the testing data and scored against the Y values. Only the out

of sample testing scores are shown in the results (table 1).

The argmax functions used to create each of the ten artificial test problems are as follows.

Artificial Test Problems

 T1: y = argmax(D1,D2) where Y = {1,2}, X is 5000x25, and each Di is as follows

o D1=sum((1.57*x0),(-39.34*x1),(2.13*x2),(46.59*x3),(11.54*x4))

o D2=sum((-1.57*x0),(39.34*x1),(-2.13*x2),(-46.59*x3),(-11.54*x4))

 T2: y = argmax(D1,D2) where Y = {1,2}, X is 5000x100, and each Di is as follows

o D1=sum((5.16*x0),(-19.83*x1),(19.83*x2),(29.31*x3),(5.29*x4))

o D2:=sum((-5.16*x0),(19.83*x1),(-0.93*x2),(-29.31*x3),(5.29*x4))

 T3: y = argmax(D1,D2) where Y = {1,2}, X is 5000x1000, and each Di is as follows

o D1=sum((-34.16*x0),(2.19*x1),(-12.73*x2),(5.62*x3),(-16.36*x4))

o D2=sum((34.16*x0),(-2.19*x1),(12.73*x2),(-5.62*x3),(16.36*x4))

 T4: y = argmax(D1,D2,D3) where Y = {1,2,3}, X is 5000x25, and each Di is as follows

o D1=sum((1.57*cos(x0)),(-39.34*square(x10)),(2.13*(x2/x3)),(46.59*cube(x13)),(-11.54*log(x4)))

o D2=sum((-0.56*cos(x0)),(9.34*square(x10)),(5.28*(x2/x3)),(-6.10*cube(x13)),(1.48*log(x4)))

o D3=sum((1.37*cos(x0)),(3.62*square(x10)),(4.04*(x2/x3)),(1.95*cube(x13)),(9.54*log(x4)))

 T5: y = argmax(D1,D2,D3) where Y = {1,2,3}, X is 5000x100, and each Di is as follows

o D1=sum((1.57*sin(x0)),(-39.34*square(x10)),(2.13*(x2*x3)),(46.59*cube(x13)),(-11.54*cube(x4)))

o D2=sum((-0.56*sin(x0)),(9.34*square(x10)),(5.28*(x2*x3)),(-6.10*cube(x13)),(1.48*cube(x4)))

o D3=sum((1.37*sin(x0)),(3.62*square(x10)),(4.04*(x2*x3)),(1.95*cube(x13)),(9.54*cube(x4)))

 T6: y = argmax(D1,D2,D3) where Y = {1,2,3}, X is 5000x1000, and each Di is as follows

o D1=sum((1.57*tanh(x0)),(-39.34*sqroot(x10)),(2.13*(x2*x3)),(46.59*(x13/x23)),(2.54*square(x4)))

o D2=sum((-0.56*tanh(x0)),(9.34*sqroot(x10)),(5.28*(x2*x3)),(-6.10*(x13/x23)),(1.48*square(x4)))

o D3=sum((1.37*tanh(x0)),(3.62*sqroot(x10)),(4.04*(x2*x3)),(1.95*(x13/x23)),(0.54*square(x4)))

 T7: y = argmax(D1,D2,D3,D4,D5) where Y = {1,2,3,4,5}, X is 5000x25, and each Di is as follows

o D1=sum((1.57*cos(x0/x21)),(9.34*((square(x10)/x14)*x6)),(2.13*((x2/x3)*log(x8))),(46.59*(cube(x13)*(x9/x2))),(-

11.54*log(x4*x10*x15)))

o D2=sum((-1.56*cos(x0/x21)),(7.34*((square(x10)/x14)*x6)),(5.28*((x2/x3)*log(x8))),(-

6.10*(cube(x13)*(x9/x2))),(1.48*log(x4*x10*x15)))

o D3=sum((2.31*cos(x0/x21)),(12.34*((square(x10)/x14)*x6)),(-

1.28*((x2/x3)*log(x8))),(0.21*(cube(x13)*(x9/x2))),(2.61*log(x4*x10*x15)))

o D4=sum((-0.56*cos(x0/x21)),(8.34*((square(x10)/x14)*x6)),(16.71*((x2/x3)*log(x8))),(-

2.93*(cube(x13)*(x9/x2))),(5.228*log(x4*x10*x15)))

o D5=sum((1.07*cos(x0/x21)),(-1.62*((square(x10)/x14)*x6)),(-0.04*((x2/x3)*log(x8))),(-

0.95*(cube(x13)*(x9/x2))),(0.54*log(x4*x10*x15)))

 T8: y = argmax(D1,D2,D3,D4,D5) where Y = {1,2,3,4,5}, X is 5000x100, and each Di is as follows

o D1=sum((1.57*sin(x0/x11)),(9.34*((square(x12)/x4)*x46)),(2.13*((x21/x3)*log(x18))),(46.59*(cube(x3)*(x9/x2))),(-

11.54*log(x14*x10*x15)))

o D2=sum((-1.56*sin(x0/x11)),(7.34*((square(x12)/x4)*x46)),(5.28*((x21/x3)*log(x18))),(-

6.10*(cube(x3)*(x9/x2))),(1.48*log(x14*x10*x15)))

o D3=sum((2.31*sin(x0/x11)),(12.34*((square(x12)/x4)*x46)),(-

1.28*((x21/x3)*log(x18))),(0.21*(cube(x3)*(x9/x2))),(2.61*log(x14*x10*x15)))

o D4=sum((-0.56*sin(x0/x11)),(8.34*((square(x12)/x4)*x46)),(16.71*((x21/x3)*log(x18))),(-

2.93*(cube(x3)*(x9/x2))),(5.228*log(x14*x10*x15)))

o D5=sum((1.07*sin(x0/x11)),(-1.62*((square(x12)/x4)*x46)),(-0.04*((x21/x3)*log(x18))),(-

0.95*(cube(x3)*(x9/x2))),(0.54*log(x14*x10*x15)))

 T9: y = argmax(D1,D2,D3,D4,D5) where Y = {1,2,3,4,5}, X is 5000x1000, and each Di is as follows

o D1=sum((1.57*sin(x20*x11)),(9.34*(tanh(x12/x4)*x46)),(2.13*((x321-

x3)*tan(x18))),(46.59*(square(x3)/(x49*x672))),(-11.54*log(x24*x120*x925)))

o D2=sum((-1.56*sin(x20*x11)),(7.34*(tanh(x12/x4)*x46)),(5.28*((x321-x3)*tan(x18))),(-

6.10*(square(x3)/(x49*x672))),(1.48*log(x24*x120*x925)))

o D3=sum((2.31*sin(x20*x11)),(12.34*(tanh(x12/x4)*x46)),(-1.28*((x321-

x3)*tan(x18))),(0.21*(square(x3)/(x49*x672))),(2.61*log(x24*x120*x925)))

o D4=sum((-0.56*sin(x20*x11)),(8.34*(tanh(x12/x4)*x46)),(16.71*((x321-x3)*tan(x18))),(-

2.93*(square(x3)/(x49*x672))),(5.228*log(x24*x120*x925)))

o D5=sum((1.07*sin(x20*x11)),(-1.62*(tanh(x12/x4)*x46)),(-0.04*((x321-x3)*tan(x18))),(-

0.95*(square(x3)/(x49*x672))),(0.54*log(x24*x120*x925)))

 T10: y = argmax(D1,D2,D3,D4,D5) where Y = {1,2,3,4,5}, X is 5000x1000, and each Di is as follows

o D1=sum((1.57*lif(x0<x23,sin(x20*x11),cos(x10))),(9.34*(tanh(x12/x4)*x46)),(2.13*lif(x10<0.0,((x321-

x3)*tan(x18)),((x156-x31)/tanh(x21)))),(46.59*(square(x3)/(x49*x672))),(-11.54*log(x24*x120*x925)))

o D2=sum((-1.56*lif(x0<x23,sin(x20*x11),cos(x10))),(7.34*(tanh(x12/x4)*x46)),(5.28*lif(x10<0.0,((x321-

x3)*tan(x18)),((x156-x31)/tanh(x21)))),(-6.10*(square(x3)/(x49*x672))),(1.48*log(x24*x120*x925)))

o D3=sum((2.31*lif(x0<x23,sin(x20*x11),cos(x10))),(12.34*(tanh(x12/x4)*x46)),(-1.28*lif(x10<0.0,((x321-

x3)*tan(x18)),((x156-x31)/tanh(x21)))),(0.21*(square(x3)/(x49*x672))),(2.61*log(x24*x120*x925)))

o D4=sum((-0.56*lif(x0<x23,sin(x20*x11),cos(x10))),(8.34*(tanh(x12/x4)*x46)),(16.71*lif(x10<0.0,((x321-

x3)*tan(x18)),((x156-x31)/tanh(x21)))),(-2.93*(square(x3)/(x49*x672))),(5.228*log(x24*x120*x925)))

o D5=sum((1.07*lif(x0<x23,sin(x20*x11),cos(x10))),(-1.62*(tanh(x12/x4)*x46)),(-0.04*lif(x10<0.0,((x321-

x3)*tan(x18)),((x156-x31)/tanh(x21)))),(-0.95*(square(x3)/(x49*x672))),(0.54*log(x24*x120*x925)))

The Symbolic Classification system for all four SC algorithms (AMAXSC, M2GP, MDC, LDA) avail themselves of the following

operators:

 Binary Operators: + - / * minimum maximum

 Relational Operators: < <= == <> >= >

 Logical Operators: lif land lor

 Unary Operators: inv abs sqroot square cube curoot quart quroot exp ln binary sign sig cos sin tan tanh

The unary operators sqroot, curoot, and quroot are square root, cube root, and quart root respectively. The unary operators inv, ln, and sig

are the inverse, natural log, and sigmoid functions respectively.

9. Performance On Test Problems
Here we compare the out of sample CEP testing scores of the four proposed SC algorithms and five well-known commercially available

classification algorithms to determine where SC ranks in competitive comparison. The four SC algorithms are: simple genetic programming

using argmax referred to herein as (AMAXSC); the M2GP algorithm; the MDC algorithm, and Linear Discriminant Analysis (LDA). The

five commercially available classification algorithms are available in the KNIME system, and are as follows: Decision Tree Learner (DTL);

Gradient Boosted Trees Learner (GBTL); Multiple Layer Perceptron Learner (MLP); Random Forest Learner (RFL); and Tree Ensemble

Learner (TEL).

Table 1. Test Problem CEP Testing Results

Test AMAXSC LDA M2GP MDC DTL GBTL MLP RFL TEL

T1 0.0808 0.0174 0.0330 0.0330 0.0724 0.0308 0.0072 0.0492 0.0496

T2 0.1108 0.0234 0.0656 0.0402 0.0740 0.0240 0.0360 0.0664 0.0648

T3 0.1436 0.0182 0.1010 0.0774 0.0972 0.0332 0.0724 0.1522 0.1526

T4 0.1954 0.0188 0.0180 0.0162 0.0174 0.0170 0.0472 0.0260 0.0252

T5 0.1874 0.1026 0.1052 0.1156 0.0858 0.0530 0.3250 0.0920 0.0946

T6 0.6702 0.5400 0.4604 0.5594 0.5396 0.3198 0.6166 0.6286 0.6284

T7 0.4466 0.4002 0.4060 0.4104 0.2834 0.2356 0.4598 0.2292 0.2284

T8 0.8908 0.4176 0.4006 0.4124 0.2956 0.2340 0.4262 0.2250 0.2248

T9 0.8236 0.7450 0.7686 0.6210 0.6058 0.4286 0.6904 0.4344 0.4334

T10 0.8130 0.7562 0.7330 0.6440 0.5966 0.4286 0.5966 0.4296 0.4352

Avg 0.4362 0.3039 0.3091 0.2930 0.2668 0.1805 0.3277 0.2333 0.2337

On a positive note, the three new proposed symbolic classifications algorithms are a great improvement over the vanilla AMAXSC

algorithm. On a negative note, none of the three newly proposed SC algorithms are the best performer. The top performer overall by a good

margin is the Gradient Boosted Trees Learner (GBTL).

Is is interesting to note that all three newly proposed SC algorithms performed better overall than the Multiple Layer Perceptron Learner

(MLP). This is significant; as it is the first time we’ve seen a genetic programming SC algorithm beat one of the top commercially available

classification algorithms.

Of the three newly proposed SC algorithms, surprisingly the MDC algorithm was the best overall performer; although all three SC

algorithms were grouped very close together in performance.

Clearly progress has been made in the development of commercially competitive SC algorithms. But, a great deal more work has to be

done before SC can outperform the Gradient Boosted Trees Learner (GBTL).

10. Conclusions
Several papers have proposed GP Symbolic Classification algorithms for multiclass classification problems [1], [9], [10], [15]. Comparing

these newly proposed SC algorithms with the performance of five commercially available classifications algorithms shows that progress

has been made. The three newly proposed SC algorithms now outperform one of the top commercially available algorithms on a set of

artificial test problems of varying degrees of difficulty.

It may be significant that, of the commercially available classifiers, the best overall performers are all tree learners. While the random

forest learner (RFL) and the tree ensemble learner (TEL) enjoy enhanced performance over the decision tree learner (DTL), it is the

gradient boosted tree learner (GBTL) which clearly enjoys the overall top performer slot on these ten artificial test problems.

It will be interesting to see if gradient boosting can be adapted to the three newly proposed SC algorithms (M2GP, MDC, and LDA) such

that they will also enjoy enhanced performance.

11. ACKNOWLEDGMENTS
Our thanks to: Thomas May from Lantern Credit for assisting with the KNIME Learner training/scoring on all ten artificial classification

problems.

12. REFERENCES
[1] Ingalalli, Vijay, Silva, Sara, Castelli, Mauro, Vanneschi, Leonardo 2014. A Multi-dimensional Genetic Programming Approach for

Multi-class Classification Problems. Euro GP 2014 Springer.

[2] Korns, Michael F. 2013. Extreme Accuracy in Symbolic Regression. Genetic Programming Theory and Practice XI. Springer, New

York, NY.

[3] Koza, John R. 1992. Genetic Programming: On the Programming of Computers by means of Natural Selection. The MIT Press.

Cambridge, Massachusetts.

[4] Korns, Michael F. 2012. A Baseline Symbolic Regression Algorithm. Genetic Programming Theory and Practice X. Springer, New

York, NY.

[5] Keijzer, Maarten. 2003. Improving Symbolic Regression with Interval Arithmetic and Linear Scaling. European Conference on

Genetic Programming,

[6] Billard, Billard., Diday, Edwin. 2003. Symbolic Regression Analysis. Springer. New York, NY.

[7] Korns, Michael F. 2014. Extremely Accurate Symbolic Regression for Large Feature Problems. Genetic Programming Theory and

Practice XII. Springer, New York, NY.

[8] Korns, Michael F. 2015. Highly Accurate Symbolic Regression for Noisy Training Data. Genetic Programming Theory and Practice

XIII. Springer, New York, NY.

[9] Korns, Michael F. 2016. An Evolutionary Algorithm for Big Data Multiclass Classification Problems. Genetic Programming Theory

and Practice XIV. Springer, New York, NY.

[10] Munoz, Louis, Silva, Sara, M. Castelli, Trujillo 2014. M3GP Multiclass Classification with GP. Euro GP 2015 Springer.

[11] Fisher, R. A. 1936. The Use of Multiple Measurements in Taxonomic Problems. Annals of Eugenics 7 (2) 179-188.

[12] Friedman, J. H. 1989. Regularized Discriminant Analysis. Journal of American Statistical Association 84 (405) 165-175.

[13] McLachan, Geoffrey, J. 2004. Discriminant Analysis and Statistical Pattern Recognition. Wiley. New York, NY.

[14] Korns, Michael F., 2013. Extreme Accuracy in Symbolic Regression. In Soule, Terrance, and Wortzel, Bill, editors, Genetic

Programming Theory and Practice XI, New York, New York, USA. Springer.

[15] Korns, Michael F., 2017. Evolutionary Linear Discriminant Analysis for Multiclass Classification Problems. In GECCO Conference

Proceedings ‘17, July 15-19, Berlin Germany 2017.

[16] Michael R. Berthold and Nicolas Cebron and Fabian Dill and Thomas R. Gabriel and Tobias K\"{o}tter and Thorsten Meinl and Peter

Ohl and Christoph Sieb and Kilian Thiel and Bernd Wiswedel, 2007. KNIME: The Konstanz Information Miner}. In Studies in

Classification, Data Analysis, and Knowledge Organization, Springer, Berlin. ISBN 978-3-540-78239-1.

